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Abstract—Parallax is a novel self-contained code integrity
verification approach, that protects instructions by overlapping
Return-Oriented Programming (ROP) gadgets with them. Our
technique implicitly verifies integrity by translating selected code
(verification code) into ROP code which uses gadgets scattered
over the binary. Tampering with the protected instructions
destroys the gadgets they contain, so that the verification code
fails, thereby preventing the adversary from using the modified
binary. Unlike prior solutions, Parallax does not rely on code
checksumming, so it is not vulnerable to instruction cache
modification attacks which affect checksumming techniques. Fur-
ther, unlike previous algorithms which withstand such attacks,
Parallax does not compute hashes of the execution state, and can
thus protect code with non-deterministic state. Parallax limits
performance overhead to the verification code, while the protected
code executes at its normal speed. This allows us to protect
performance-critical code, and confine the slowdown to other
code regions. Our experiments show that Parallax can protect up
to 90% of code bytes, including most control flow instructions,
with a performance overhead of under 4%.

I. INTRODUCTION

Code integrity verification is an anti-tampering primitive
which aims to ensure that code executes as intended on a
hostile host [36], without being modified by an adversary. Self-
verification is a subclass of code verification, which provides
integrity checking without requiring specialized hardware, such
as trusted execution modules, and without the use of remote
verification servers.

Code protection primitives like integrity verification are
widely used in practice to delay reverse engineering attacks,
and to deter non-persistent adversaries. Code protection is
commonly used by malware to prolong its lifespan and
monetization period [7, 29, 30], but it is also used to protect
benign programs against software cracking [6]. Furthermore,
code integrity verification in particular can also defend against
certain parasitic malware techniques, which inject inline hooks
or code into processes [37] or executables [34].

Preventing malicious code injection is not only crucial
to the security of end-user computer systems, but also as a
defense against high-profile attacks, the importance of which
is witnessed by recent targeted threats like Stuxnet [17] and
Gauss [21]. Recently, the American Institute of Aeronautics and
Astronautics launched a code protection initiative to prevent
attacks against aviation control systems [3]. The United States
Department of Defense has also expressed interest in code
protection for use in hardened computing centers, as well as
real-time software used in weapon systems which may fall into
enemy hands [35].

Most existing code self-verification algorithms work by
computing checksums over protected code regions, and ver-
ifying that these checksums are as expected. Using several
cross-verifying checksummed code regions, such algorithms can
provide fairly strong tamperproofing. Unfortunately, Wurster et
al. have shown that all such algorithms are inherently vulnerable
to automated attacks which exploit the distinct handling of code
and data in modern processors [36]. Wurster et al. implement
a kernel patch which allows attackers to freely tamper with
the code in the processor’s instruction cache, while leaving the
data cache entirely untouched. This completely circumvents
checksumming algorithms, as these treat code as data, thus
fetching it from the data cache instead of the instruction cache.

The foremost algorithm designed to defeat this attack is
oblivious hashing (OH) [13, 20]. Instead of directly checking
code integrity, oblivious hashing intersperses hashing instruc-
tions with the protected code, which build runtime hashes of
the execution state. The integrity is then verified by checking
that the computed hashes correspond to known correct values.
However, this technique can only verify deterministic execution
state, of which the expected hash is known at compile time.
This means that OH cannot protect code which involves non-
deterministic inputs, such as environment parameters or user
input. Additionally, the hashes used to verify the state are found
using dynamic testing, limiting the protection to code paths
exercised in these tests.

We propose a novel code self-verification approach, which
is based on Return-Oriented Programming (ROP). ROP was
originally proposed as an exploitation technique which allows ar-
bitrary code execution in the presence of W⊕X [33]. ROP uses
short return-terminated instruction sequences, called gadgets,
which are chained together by arranging their addresses on the
stack such that each terminating return causes a control transfer
to the next gadget. If a sufficient set of gadgets is available,
ROP is a Turing-complete programming technique which can
implement arbitrary computations on top of a host program.
A Turing-complete gadget set exists in most programs [32].
We refer to an arrangement of gadget addresses into a ROP
program as a ROP chain.

Our code verification approach protects code by overlapping
ROP gadgets with it. Then, selected instructions from the
protected program are translated into ROP chains which use
the overlapping gadgets. Since tampering with the gadgets
causes the translated instructions to malfunction, this implicitly
verifies the integrity of the protected code. Thus, we refer to
these translated instructions as verification code. Our notion of
verification code can be seen as a generalization of code hiding
techniques based on function reuse [23]. We show in Section VI
that the verification code is itself also tamper resistant.



Our technique has several advantages over prior work.

1) The code verification does not use checksumming, and is
thus immune to the attack of Wurster et al.

2) In contrast to oblivious hashing, no prior knowledge of
the runtime state is required. Therefore, our technique
can protect non-deterministic code regions. Furthermore,
we apply this protection statically, so it is oblivious to
dynamic code coverage limitations.

3) The overlapping gadgets do not slow down code they
protect. Instead, performance overhead is confined to
the verification code using the gadgets. This makes it
possible to tamperproof performance-critical code while
confining the performance degradation elsewhere. In
contrast, oblivious hashing slows down protected code
by interspersing hashing instructions with it.

4) We show in Section VII that our technique can protect up
to 90% of code bytes at a performance overhead of less
than 4%. As argued in Section VIII, non-deterministic
control flow decisions are among the most likely attack
targets. Thus, our protectability rate exceeds that of
oblivious hashing [13], and we protect crucial instructions
which OH cannot.

5) In contrast to prior work, including oblivious hashing,
our approach lends itself to binary-level implementation,
and does not inherently require source. This enables the
protection of legacy binaries.

Since the verification code uses ROP, it requires a set of
gadgets overlapping with the instructions we protect. We both
use gadgets already present in the host binary, and statically
rewrite the binary to craft new ones. Since a Turing-complete
gadget set is already present in most programs [32], the
additional tamperproofing gadgets generally do not increase
the vulnerability of protected programs to ROP attacks.

As a proof of concept, we built a prototype implementation
of our technique for the x86 platform, called Parallax. It uses
binary rewriting to create protective gadgets, and builds on ROP
compiler functionality to generate verification code. Our proof
of concept uses source to simplify binary rewriting, and also
offers the option of selecting verification code at the source
level. However, this is not a requirement of our technique,
which can be implemented entirely at the binary level.

The rest of this paper is organized as follows. Section II
discusses background and threat assumptions, while Section III
provides an overview of Parallax. In Section IV, we describe
the rules we use to craft protective gadgets. Section V discusses
the implementation of verification code, and Section VI dis-
cusses the attack resistance of Parallax. Evaluation results and
limitations of Parallax are discussed in Sections VII and VIII.
We discuss related work and summarize our conclusions in
Sections IX and X.

II. BACKGROUND

This section describes the workings of Return-Oriented
Programming, upon which we base our technique. Furthermore,
we describe the threat model which Parallax assumes.

A. Return-Oriented Programming

ROP was originally proposed in 2007 as an exploitation
technique designed to circumvent memory protection mech-
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Fig. 1: An example ROP chain. Gadget g1 loads a constant into eax, which
is then added to esi by g2.

anisms like W⊕X [33]. ROP makes use of short instruction
sequences found in a host program’s memory space, called
gadgets, each of which ends in a return instruction. Each gadget
typically performs a basic operation, such as addition or logical
comparison. Gadgets can be part of the host program’s normal
instructions, but can also be unaligned instruction sequences
embedded in the normal instruction stream. A ROP program
consists of a chain of gadget addresses on the stack, such that
the return instruction terminating each gadget transfers control
to the next gadget in the chain.

Figure 1 illustrates an example ROP chain. Initially, the
stack pointer (esp) points to the address of the first gadget g1
in the chain. Upon execution of a return instruction, control is
transferred to this gadget. It performs a pop instruction, which
loads a constant arranged on the stack into the eax register,
and increments esp to point to gadget g2. Then, the ret

instruction of gadget g1 transfers control to gadget g2, which
adds the constant in eax to the esi register. Gadget g2 then
returns to gadget g3, and so on, until all gadgets g1, . . . , gn
have been executed.

B. Threat Model

Parallax assumes the hostile host threat model [36], which is
the standard model for tamperproofing techniques. It assumes
that the tamperproofed application is executed on a system
controlled by a hostile user, which has full control over
the runtime environment, and may arbitrarily modify the
tamperproofed executable itself. This includes alterations made
during runtime debugging, as well as static code patching.
The intent of the hostile user is typically to circumvent
access controls in the protected application, such as anti-
debugging checks or license verifications. The challenge for
our tamperproofing technique is thus to maximize the effort
required by the hostile user to successfully tamper with the
protected application, without assuming any trusted components
in the runtime environment.

III. OVERVIEW

In this section, we give an overview of how Parallax
implements its protection mechanism. Our technique protects
against both static and dynamic code modification. Thus, we
protect against attacks ranging from the circumvention of anti-
debugging checks, to large-scale software cracking. Figure 2
illustrates how Parallax protects a binary.

To protect a binary, we select one or more code fragments
at the source or binary level for use as verification code (step 1©
in Figure 2). In Section VII-B, we describe our strategy to
do this automatically. Additionally, we determine a list of
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Fig. 2: A high-level overview of Parallax.

instructions to protect. If source is available, these are selected
at the statement or function level, and then mapped to the
binary level after compilation using debugging symbols. If only
a binary is available, protection is assigned at the instruction
or function level.

Parallax begins by translating the selected verification code
into one or more ROP chains (sequences of ROP gadgets) 2©.
These chains use placeholder gadget addresses, since the final
addresses are not yet known at this point. Eventually, these
placeholders will be replaced by gadget addresses in the
protected code, so that executing the verification code implicitly
verifies that the protected code is still intact. Along with the
ROP chains, Parallax inserts a loader routine to bootstrap them.
Optionally, the binary to protect is compiled from source if
not operating on a legacy binary.

Next, Parallax creates a collection of all gadgets available
in the binary 3©. First, any existing gadgets are added to the
collection. Then, Parallax walks through the list of instructions
which were selected for protection. For every such instruction,
Parallax examines if it can be augmented with an overlapping
gadget. If so, it inserts a gadget using binary rewriting, and
adds this new gadget to the collection. The gadgets are denoted
as g1, . . . , g5 in Figure 2. Our strategy for crafting overlapping
gadgets is discussed in Section IV.

Note that we do not require the inserted overlapping gadgets
to form a Turing-complete set, since most binaries contain a
Turing-complete gadget set by default [32]. If not, a standard
set of non-overlapping gadgets can be inserted into the binary
to augment the protective gadgets already inserted.

Finally, Parallax creates a gadget mapping which cat-
egorizes the available gadgets in the binary into a set of
types; for instance, memory stores and register moves. The
gadget mapping is then used to recompile the verification
code such that it uses actual gadgets instead of placeholder
addresses 4©. During compilation of the verification code,
overlapping gadgets are always preferred over non-overlapping
gadgets. Tampering with the protected instructions modifies
the code bytes of the overlapping gadgets, thereby invalidating
them. Such changes are implicitly detected by the verification
code, which malfunctions if the integrity of the gadgets it uses
is violated. We discuss the tampering and analysis resistance
of verification code in Sections V and VI.

Listing 2 An attempt to disable the ptrace detector.
(gdb) set *(unsigned char*)0x08048479=0x90

(gdb) set *(unsigned char*)0x0804847a=0x90

IV. PROTECTING CODE INTEGRITY

This section discusses the creation of ROP gadgets which
overlap with existing code, and protect the code integrity. As
discussed in Section III, these gadgets need not form a Turing-
complete set. Instead, the focus is on gadgets which have
maximal overlap with the protected instructions. The creation
of verification code which uses the gadgets is discussed in
Section V. We provide an example of gadget insertion in
Section IV-A, and generalize it in Section IV-B by describing
the rules which Parallax uses to craft overlapping gadgets.

A. A Tamperproofed Ptrace Detector

We provide a running example of a ptrace detection function
augmented with overlapping gadgets. We compiled this function
with gcc 4.6.3, and then used Parallax to search for locations
where overlapping gadgets could be inserted. In the example,
we manually chose which instructions to protect from the list of
possible locations emitted by Parallax. To avoid manual effort,
it is also possible to input a list of functions to protect, and rely
on Parallax to overlap gadgets with as many instructions in
these functions as possible. An alternative approach, if source is
available, is to select high-level source lines to protect, and use
debugging symbols to map these onto the associated machine
instructions. The rules Parallax uses to create gadgets are
discussed in Section IV-B.

Listing 1 shows a disassembly dump of our tamperproofed
ptrace detector. For clarity, we have shortened addresses such
as 08048438 to n+38. We first describe the purpose of the
ptrace detector, and then elaborate on how it is protected.

The ptrace detector checks if a process is being debugged
using ptrace. To achieve this, the detector calls the ptrace
system call, requesting a trace of the host process. If a
debugger is already attached, this call fails, and the debugger
is thus detected. In the example, the detector jumps to a
cleanup_and_exit function if a debugger is detected.

Attackers commonly attempt to circumvent such anti-
debugging code by modifying it at runtime, as shown in



Listing 1 A ptrace detector with gadgets (shaded) overlapping sensitive areas.

n+38 <cleanup_and_exit>:

n+38: 55 push ebp
relocate

−−−−−−−−−−−→

n+39: 89 e5 mov ebp,esp

n+3b: 83 ec 18 sub esp,24

n+3e: 89 04 24 mov [esp],eax

n+41: e8 d5 fe ff ff call exit@plt

n+46 <check_ptrace>:

n+46: 55 push ebp

n+47: 89 e5 mov ebp,esp

n+49: 83 ec 18 sub esp,24

n+4c: c7 44 24 0c 00 00 00 00 mov [esp+0xc],0

n+54: c7 44 24 08 00 00 00 00 mov [esp+0x8],0

n+5c: c7 44 24 04 00 00 00 00 mov [esp+0x4],0

n+64: c7 04 24 00 00 00 00 mov [esp],0

n+6b: e8 cb fe ff ff call ptrace@plt
existing far ret
−−−−−−−−−−−→

n+70: 85 c0 test eax,eax

n+72: 79 07 jns n+7b

n+74: b8 01 00 00 00 mov eax,1
modify exit arg

−−−−−−−−−−−→

n+79: eb bd jmp n+38
modify target

−−−−−−−−−−−→

n+7b: b8 00 00 00 00 mov eax,0

n+80: c9 leave

n+81: c3 ret

n+32 <cleanup_and_exit>:

n+32: 55 push ebp

n+33: 89 e5 mov ebp,esp

n+35: 83 ec 18 sub esp,24

n+38: 89 04 24 mov [esp],eax

n+3b: e8 d5 fe ff ff call exit@plt

n+46 <check_ptrace>:

n+46: 55 push ebp

n+47: 89 e5 mov ebp,esp

n+49: 83 ec 18 sub esp,24

n+4c: c7 44 24 0c 00 00 00 00 mov [esp+0xc],0

n+54: c7 44 24 08 00 00 00 00 mov [esp+0x8],0

n+5c: c7 44 24 04 00 00 00 00 mov [esp+0x4],0

n+64: c7 04 24 00 00 00 00 mov [esp],0

n+6b: e8 cb fe ff ff call ptrace@plt

n+70: 85 c0 test eax,eax

n+72: 79 07 jns n+7b

n+74: b8 c3 00 00 00 mov eax,0xc3

n+79: eb c3 jmp n+32

n+7b: b8 00 00 00 00 mov eax,0

n+80: c9 leave

n+81: c3 ret

Listing 2. There, an adversary overwrites the jump to the
cleanup_and_exit function at address n+79 with nop

instructions. The goal of this attack is to redirect control to a
successful return even if a debugger is attached.

Overlapping gadgets defend against this attack class, as
they are destroyed if the code they overlap with is modified. As
mentioned in Section III, this is detected when the verification
code using the gadgets fails to execute. Note that an adversary
could also modify the call to check_ptrace itself. As
we show in Section VII-A, Parallax can protect up to 90%
of the binary, allowing us to defend against such attacks
by inserting protective gadgets beyond the primary list of
instructions to protect. While this example focuses on runtime
code modification, Parallax also prevents static code patching,
used in software cracking.

In Listing 1, four key code areas which adversaries are likely
to target have been protected using three overlapping gadgets.
The first two locations are (1) the call to ptrace itself, at
address n+6b, and (2) the first argument to ptrace, at address
n+64, which requests a trace of the host process. An adversary
may eliminate the call, so that execution always falls through
to the successful return code at the end of the function. Also,
an adversary may modify the call argument to request another
action from ptrace instead of a trace of the host process.
Both the call and its first argument are protected by a seven
byte long overlapping gadget starting at address n+66. This
is an already existing gadget, which Parallax found without
making any code modifications. The gadget consists of the
instructions and al,0; add [eax],al; add al,ch;

retf, and can be used to move the contents of the ch register
into the al register (the memory write can be ignored, since
al is zeroed out).

Note that it is also possible to protect the remaining
ptrace arguments at addresses n+4c through n+5c. One
possible way to protect these is to use the immediate splitting
rule, discussed in Section IV-B2. For simplicity of the example,

we do not show these modifications in Listing 1. However, we
provide a separate example of the immediate splitting rule in
Section IV-B2.

The third location which may be attacked is (3) the jump to
the cleanup_and_exit function, at address n+79, which
is taken if a debugger is detected. Eliminating this jump would
again cause control to fall through to the successful return at the
end of the function, even if the call to ptrace failed. Parallax
protects this jump by relocating the cleanup_and_exit

function, and modifying the jump offset to encode the ret

instruction for a gadget. The gadget starts at address n+78,
and contains instructions add bl,ch; ret.

Finally, the anti-debugging code could be disabled by
(4) rewriting the jns instruction at address n+72 to an
unconditional jmp instruction, so that the code always jumps
to a successful return. Parallax identifies two possible ways to
protect against this. The first is to modify the immediate operand
of the mov instruction at address n+74, such that its least
significant byte encodes a ret instruction. This creates a five
byte long gadget at address n+71, consisting of the instructions
sar byte [ecx+0x7],0xb8; ret. This gadget fills the
memory byte at address [ecx+0x7] with the sign of the byte
it contains (the bits are either all set to 0, or all set to 1).
The mov operand is an exit status, and can be safely modified
assuming that the exit semantics differentiate only between
zero and non-zero (see Section IV-B).

An alternative way to protect the jns is to inject a spurious
instruction directly after it, which encodes the missing part
of a partial gadget. In the example, we did not use spurious
instructions, to show that no added code is needed to protect
the function.

B. Binary Rewriting Rules

This section describes the binary rewriting rules Parallax
uses to augment instructions with overlapping gadgets. The
added gadgets do not induce any performance overhead on the



Listing 3 A split mov with overlapping gadgets (shaded).

mov eax,1

(a) Original code.

b8 01 01 c3 00 mov eax,0xc30101

35 00 01 c3 00 xor eax,0xc30100

(b) Protected code.

protected code, except where explicitly noted. In Section VII-A,
we measure the coverage of each of these rules. We use
binary rewriting techniques for legacy binaries explored in
prior work [22, 38].

1) Existing gadgets: Parallax searches for any existing
gadgets which can be used to protect code integrity. The use of
existing gadgets is advantageous, as it requires no modifications
to the protected code regions. In Section VII-A, we find that
3%–6% of the code bytes in our test cases is protectable using
existing gadgets.

2) Modified immediate operands: One rule used by Parallax
to create new gadgets is that a partial gadget may be combined
with an adjacent immediate operand if this operand can be
modified to encode the missing portion of the desired gadget.
In Listing 1, this rule has been applied in the operand of the
instruction at address n+74. We distinguish two ways in which
immediate operands can be safely modified.

First, depending on the instruction type, immediates can be
modified by splitting up their parent instructions. For instance,
an addition can be split into two additions or subtractions, where
the first takes an arbitrary operand, and the second compensates
as required. Similarly, immediate operands of mov instructions
can be modified to encode a gadget, and this modification
can then be compensated for using bitwise operations on the
destination operand. As an example of this rule, Listing 3 shows
how the immediate operand of a mov instruction is modified
and combined with an xor instruction to compensate for the
modifications.

Instruction splitting induces a small performance overhead
on the protected code. Additionally, it may require the insertion
of code to save and restore the CPU status register.

Second, it is generally possible to freely modify immediates
which set eax before a return, or push the status of the exit
function. This is because return value and exit status semantics
commonly distinguish only between zero and non-zero. This
rule can be disabled for conflicting semantics.

3) Rearranged code and data: Parallax also attempts
to encode missing parts of gadgets in addresses and jump
offsets by strategically aligning functions and global variables.
For instance, in the example shown in Listing 1, we have
forced the creation of a ret instruction by aligning the
cleanup_and_exit function such that the jump offset at
address n+79 is equal to 0xc3 (the ret opcode).

4) Spurious instructions: Spurious instructions which con-
tain (parts of) gadgets can be inserted at any place in the code,
as long as care is taken to ensure that their side-effects do not
influence the semantics of the original code. This can be ensured
by saving and restoring the program state at each location
where spurious instructions are inserted. Alternatively, side-
effect analysis can be performed on the inserted instructions
using frameworks such as BAP [9].

The main benefit of spurious instructions is that they
can always be inserted to encode missing parts of gadgets.

However, because spurious instructions induce a slowdown on
the protected code, it is best to avoid them if possible.

5) Far-return gadgets: Far returns (retf) are quite rare
in compiler-generated x86 code. Nevertheless, gadgets ending
in far returns can sometimes be used to protect code bytes, as
was done at address n+66 in Listing 1. Parallax searches for
existing far-return gadgets in the same way as for near-return
gadgets.

6) Using add for memory operations: One of the most
useful instruction families for gadgets is the add family. This
is because the opcodes of add range from 0x00 to 0x05,
which are very common values in immediate operands. Listing 1
contains several gadgets which use add instructions, such as
the gadget protecting the call to ptrace.

Next to implementing additions, add instructions with
memory operands can also be used as loads and stores. For
instance, add [ecx],eax is a store of the value in eax to
the address in ecx, if this memory is initially zero.

V. VERIFYING CODE INTEGRITY

In Section IV, we discussed the creation of overlapping
gadgets for code protection. To protect their parent instructions,
the integrity of these gadgets must be verified by one or more
ROP chains. In this section, we discuss the translation of
existing (source or binary) code from the protected program
into ROP chains which act as verification code. These ROP
chains use the gadgets contained in the protected code regions.
We stress that the verification code does not perform any
active verification, checksumming or otherwise. Instead, it
detects and responds to tampering in a completely passive way,
by malfunctioning if the gadgets in protected code regions
are damaged. We implement verification code at function
granularity, meaning that whole functions from the original
program are translated to ROP code. For brevity, we refer to a
function-level verification ROP chain as a function chain. In
Section V-C, we also briefly report on our experiences with
instruction-level verification.

A. Implementation of Function Chains

Function chains were already briefly discussed in Section III.
Figure 3a illustrates a binary protected using function chains.
As discussed in Section III, the protected binary contains several
gadgets g1, g2, g3, which are crafted such that they overlap with
instructions which must be protected. Furthermore, a selected
function f1 from the protected binary’s code section is translated
into equivalent ROP verification code, denoted as ROP (f1).
Additionally, a small amount of loader code is inserted, which
is responsible for starting the execution of the verification code.
The minimum operations required for this are (1) pointing the
stack pointer to the beginning of ROP (f1), and (2) executing
a return instruction to transfer control to the first gadget in the
verification code.

In our Parallax prototype, we implemented function-level
verification on top of a modified version of the open source ROP
compiler ROPC [2], which is based on Q [32]. Our prototype
loader code, which bootstraps the execution of the function
chains, is slightly more extensive than shown in Figure 3a.
Particularly, in addition to pointing the stack pointer to the start
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Fig. 3: Verification at function and instruction level.

of a function chain and executing a return, we also ensure that
execution continues cleanly after the function chain is complete.
To achieve this, the loader code appends an epilogue to each
function chain before transferring control to it. The epilogue
consists of the address of a pop esp gadget, followed by a
stack address in the original stack frame of the calling function.
At this stack address, the return address for the function chain
is stored. Before the epilogue’s pop esp gadget is executed,
the stack pointer points inside the function chain. The pop

esp points it back into the calling function frame, to the stack
location containing the function chain’s return address. Now,
when the function chain returns, this transfers control back to
the calling function, and program execution continues normally.

In addition to the epilogue, we perform a pushad directly
before, and a popad directly after each function chain. These
instructions save and restore the register state, preventing
problems due to registers clobbered by the function chain.

B. Dynamically Generated Function Chains

Function chains can reside in data memory, which is
writable even with W⊕X protection on. This means that it
is possible to generate function chains at runtime. Parallax
implements optional support for this. Dynamic function chain
generation has several advantages. (1) It allows for encrypted
and self-modifying function chains, which are more resistant
to analysis than their non-dynamic counterparts. We evaluate
the performance of RC4-encrypted and xor-encrypted function
chains in Section VII-B. (2) Multiple instances of the same
function chain can be generated probabilistically, with each
instance using a different set of semantically equivalent gadgets.
This allows a small function chain to verify a large set of
gadgets, checking a subset each time it is executed. The tradeoff
of this approach is that the protection of each gadget becomes
probabilistic, rather than deterministic.

Specifically, let T := {t1, . . . , tn} be the set of used gadget
types in the function chain, and for 1 ≤ i ≤ n, define Gi :=
{g | g implements ti}. Thus, each Gi is the set of all gadgets
which implement gadget type ti. For probabilistically generated
function chains, we use an extended notion of the gadget types
mentioned in Section III, which defines not only the operation
implemented by a gadget, but also its operand registers and
memory locations. Then, for every operation, the function
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Fig. 4: Generating a function chain by combining vectors from a basis B,
indexed by arrays A1 and A2.

chain can probabilistically choose a gadget g ∈ Gi. In total,
this yields

∏n

i=1
|Gi| possible distinct gadget subsets which

can be checked by the same function chain. Because the used
subset of gadgets is probabilistic, it is hard for an adversary
to be sure that his code modifications will work for every
execution of the program. This is an especially useful property
to protect against software cracking, where adversaries aim to
widely distribute modified applications.

Parallax implements probabilistically generated function
chains by considering each function chain as a series of vectors
v1, . . . , vn, where vi ∈ {0, 1}w for 1 ≤ i ≤ n. Here, w is
the native memory word length in bits (typically 32 or 64).
Intuitively, each vector in a function chain corresponds to a
gadget address or constant used by the chain (all constants
in our function chains are word-sized). Each vector can be
generated using a linear combination of vectors from a basis
B = {b1, . . . , bw} which spans the vector space {0, 1}w.

To support dynamic generation of multiple variants of the
same function chain, we define a series of N index arrays
A1, . . . , AN , such that each Ai for 1 ≤ i ≤ N is a two-
dimensional array of vector indices. The number of index arrays
N can be arbitrarily chosen. If the function chain contains l
vectors, then each Ai stores l lists of vector indices. If the
l-th vector from the function chain is of gadget type t, then
the l-th index list in each Ai contains indices j1, . . . , jk which
index vectors bj1 , . . . , bjk from B such that bj1⊕, . . . ,⊕bjk ∈
{g | g implements t}. This means we can form N semantic
equivalents for each vector in a function chain by choosing
randomly between A1, . . . , AN and combining the basis vectors
specified there. Figure 4 illustrates this approach to generating
function chains. For a function chain of length l, there exist
at most N l variants (assuming that no two Ai store the same
index list at any position).

We generate the index arrays by repeatedly compiling the
function chain, each time feeding a different gadget mapping
to the ROP compiler. By varying the set of gadget addresses
used in each mapping, we obtain different compiled variants
of the function chain. We then split each vector from every
compiled variant into basis vectors, and store the indices of
these in the index arrays. Note that the compiled function
chains themselves are not stored in the binary, as shown in
Figure 4. Instead, we use the index arrays to probabilistically
generate a function chain variant at runtime, just before the
function chain is called. Since we randomly choose between
the index arrays at vector granularity, the possible number of



function chain variants generated at runtime is greater than the
number of compiled variants.

In Section VII-B, we discuss our performance experiments
on dynamic function chain generation. We report results
for function chains encrypted with RC4 and xor, and for
probabilistically generated function chains.

C. Instruction-Level Verification

In addition to function-level verification, we also experi-
mented with instruction-level verification. Instead of translating
a whole function, this approach translates many single instruc-
tions into short ROP chains, which we refer to as µ-chains.
Figure 3b compares µ-chains to function chains.

We find µ-chains to be suboptimal for several reasons.
(1) To minimize control transfer overhead, µ-chains are best
implemented inline in the code section, as shown in Figure 3b.
This means that, unlike function chains, µ-chains cannot benefit
from additional protection by checksumming (due to the attack
of Wurster et al. [36]) or self-modification. (2) The inline
gadget setup instructions used by µ-chains can be detected
through static analysis, and can be exploited by an adversary
to pinpoint gadgets used for protection. (3) The overhead of
µ-chains exceeds that of function chains by a factor of 2×
on average, because each µ-chain contains its own prologue
and epilogue. For these reasons, we focus on function-level
verification in this paper.

VI. ATTACK RESISTANCE

This section discusses the resistance of our technique to
attacks which attempt to disable, circumvent, or tamper with
the verification code. As mentioned, the verification code is a
translation to ROP of code from the original program, which
is required for the program to correctly execute. The challenge
for an adversary is thus to tamper with the protected program
in such a way that this is not detected by the verification code,
without modifying the verification code functionality. The rest
of this section discusses three attack classes.

A. Code Restoration

An adversary may attempt to evade detection by restoring
modified code after it has executed. Such code restore attacks
are only relevant in dynamic (runtime) tampering. For static
attack scenarios, as in software cracking, adversaries cannot use
code restore attacks. It is well-recognized in the literature that no
self-sufficient tamperproofing algorithm can completely prevent
code restore attacks [14]. However, Parallax complicates such
attacks in several ways. (1) It is critical to use verification
functions which are executed repeatedly through the runtime
of the protected application. As we show in Section VII-B,
Parallax achieves this while keeping performance overhead low
(up to 4%). (2) By decoupling verification code from protected
code, Parallax maximizes the difficulty for an adversary to
pinpoint which modifications trigger the tamper response.

B. Verification Code Replacement

Additionally, an adversary may tamper with the code
locations where verification code is initialized, and attempt
to replace it with another ROP chain, or with non-ROP code.

Several factors prevent such attacks. (1) The replacement code
must be functionally equivalent to the verification code, while
not using the same gadgets. The requirement for functional
equivalence imposes a first challenge to the adversary, namely
the need to reverse engineer the verification code. This is a time-
consuming effort, which is complicated by the lack of analysis
tools for ROP code [26]. (2) More fundamentally, Parallax
increases the reverse engineering effort by using dynamically
generated and self-modifying ROP code, as proposed in
Section V-B. (3) Because the verification code initialization is
deterministic, it could be protected using techniques orthogonal
to ours, like oblivious hashing.

C. Verification Code Modification

Adversaries may also modify the verification code itself.
Here, one of the main strengths of Parallax becomes apparent:
because the verification code resides in data memory, it can be
protected by any traditional checksumming technique. At the
same time, there is no risk of the attack of Wurster et al. [36],
because that attack relies on the handling of code as data. To
prevent persistent tampering with the checksumming code, we
propose to use a network of cross-verifying checksums, as
explored by Chang et al. for code verification [11]. Such a
network can be implemented by embedding the checksumming
code inside the verification functions, and letting each verifica-
tion function checksum itself as well as several others. This way,
checksumming can also be embedded in dynamically generated
verification code (which itself also complicates tampering). As
checksumming is not fundamental to our technique, we leave its
implementation to future work. We expect that the performance
of checksumming will be similar to that of verification code
encryption (evaluated in Section VII-B).

VII. EVALUATION

This section evaluates the performance of Parallax, our pro-
totype implementation of ROP-based code integrity verification.
In Section VII-A, we measure what percentage of code bytes
in real-world programs can be protected using overlapping
gadgets. Next, Section VII-B evaluates the runtime overhead
induced by the verification code using the gadgets.

A. Protectable Code Locations

We define a protectable code byte as an instruction byte
for which we can craft an overlapping gadget using one of the
rewriting rules discussed in Section IV-B. We used Parallax
to measure the percentage of protectable code bytes in a set
of real-world programs consisting of wget, nginx, bzip2, gzip,
gcc, and lame, compiled for x86 using gcc 4.6.3.

Figure 6 shows the results of our experiment. The figure
shows the percentage of protectable code bytes using existing
near-return gadgets, far-return gadgets, and gadgets created
by modifying immediates and jump offsets. Additionally, the
figure shows the percentage of code bytes that can be protected
using any of these rules. This percentage can be lower than the
sum of the per-rule percentages, since some code bytes can be
protected using multiple rules.

In our experiments, modifications to immediates were
only applied in add, adc, sub, sbb, and mov instructions.
Examples of how we apply such modifications were discussed
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Fig. 6: Code bytes protectable by rules from Section IV-B.

in Section IV-B. Modifications to jump offsets were considered
for all variants of the jmp and jcc instructions, as well
as for call instructions. No results are shown for the
spurious-instructions rule, as this rule can always be applied.
Furthermore, we limited the length of the considered gadgets
to six instructions, as longer gadgets are difficult to use in
practical ROP chains. Note that it is not necessarily possible
to protect all potentially protectable code bytes at once, since
the required modifications may conflict.

The lowest protectability rate was 63% for lame, and the
highest rate was 90% for gcc. Using any of the rewriting
rules, an average of 75% of the code bytes is protectable.
As can be seen from Figure 6, between 3% and 6% of the
code bytes contains an existing overlapping near-return gadget.
Additionally, up to 1% of the code bytes in the test programs
overlaps with a far-return gadget. The near-return and far-return
gadgets add up to protect between 4% and 7% of the code
bytes, without requiring any modifications. The protectability
rate for the immediate-modification rule ranges from 37%–60%,
while ranging from 43%–84% for jump-modification.

B. Runtime Overhead

We also evaluated the performance of verification code.
To evaluate the performance, we selected one function from
each program and measured the performance before and
after translating it to ROP code. We use the following (fully
automatable) algorithm to select which function to translate

in a given program. (1) We first analyze the call graph of the
program to find functions which are called repeatedly from
several locations. This ensures that the integrity is verified
repeatedly. (2) We then profile the program, and select the
functions from the previous step which contribute less than a
threshold to the total execution time (2% in our experiments).
(3) Finally, we select from this the function containing the most
types of operations, ensuring good coverage of all gadgets. We
considered both application-specific and library functions for
translation to function chains.

For each function, we measured the cleartext slowdown
induced purely by the transformation to a function chain.
Furthermore, we measured slowdowns for RC4-encrypted and
xor-encrypted function chains, as well as function chains
generated probabilistically through linear combination (as
described in Section V-B). Figures 5a and 5b show the resulting
function chain slowdowns and overall runtime impacts for each
of these hardening strategies.

The cleartext function chain slowdown ranges from 3.7×
for gcc to 46.7× for wget. RC4-encrypted function chains
have the poorest performance, followed by probabilistically
generated and xor-encrypted function chains. The slowdown
of RC4-encrypted function chains ranges from 7.6× for nginx
to 64.3× for wget, but the greatest performance decrease is
seen in lame. This is because the function chain for this test
case executes in only 4µs, so that the RC4 initialization phase
causes a large slowdown.

Despite the significant slowdown induced on each translated
function, the whole-program overheads are limited, ranging
from 0.1% for gcc to 2.7% for wget using cleartext function
chains. When using RC4 encryption, the overhead ranges
from 0.2% for gcc to 3.7% for wget. In our experiments,
the decryption step (xor, RC4, or linear combination) was
performed on each function chain call. Summarizing, the overall
runtime overhead of protected binaries is limited, provided
that care is taken not to use performance-critical functions as
verification code.

VIII. DISCUSSION AND LIMITATIONS

This section discusses the tradeoffs and limitations of
Parallax. We also compare these tradeoffs to those of other
tamperproofing techniques.



A. Dynamic Circumvention

The goal of our work is to protect code against explicit
modifications. Some dynamic analysis primitives, such as soft-
ware breakpoints and dynamic code patching, are also detected
by Parallax (see Section IV-A). However, Parallax does not
explicitly defend against dynamic analysis. Specifically, some
dynamic analysis tools, such as Pin [1] and DynamoRIO [8],
instrument binaries without altering their runtime code section,
and are thus not detected by Parallax. However, Parallax can
protect specialized detection code for these tools, which was
developed in related work [16].

B. Control Flow Integrity

Prior work has explored the detection of ROP-based exploit
code at runtime, using heuristic-based system-level monitoring
tools like kBouncer and ROPGuard [27, 28]. These tools may
conflict with our tamperproofing algorithm, detecting its use
of ROP code as if it were malicious. However, recent work
has shown that heuristic-based monitoring approaches can
be fundamentally circumvented by simple modifications to
ROP chains [15, 19, 31]. Parallax can employ these same
modifications to avoid conflicts. For instance, using a small
number of long gadgets or NOP-gadgets is sufficient to allow
Parallax to operate in unison with heuristic system-level ROP-
monitoring tools [19]. Since such gadgets are present by nature
in nearly all applications, Parallax can use them without
opening the application up to ROP attacks any more than
it already was.

Stronger Control Flow Integrity (CFI) approaches like
CCFIR [38] and the original work by Abadi et al. [4] are applied
at the application level rather than the system level. These
approaches incur higher overhead than system-level approaches,
and are difficult to apply to legacy binaries, which has thus far
prevented their widespread deployment. Full CFI, as proposed
by Abadi et al., is difficult to combine with Parallax, due to its
need to record (and thus reveal to an adversary) all legal control
transfers. However, as these are application-level approaches,
there is a large amount of leeway for balancing the level of
CFI enforcement against the desired level of tamperproofing
per binary.

C. Protection Coverage

Our technique provides vastly different protection tradeoffs
than oblivious hashing. (1) As mentioned, oblivious hashing
can only protect code with deterministic execution state. Unpro-
tectable code includes code which depends on system calls like
those in the ptrace detector from Section IV-A [13]. Arguably,
such non-deterministic code is more likely to be targeted by
adversaries than deterministic code. For instance, adversaries
commonly modify control flow instructions which depend on
external inputs like license keys. Thus, a significant advantage
of our technique is that it can protect both deterministic and
non-deterministic code. (2) Oblivious hashing covers only code
paths of which the state was recorded during testing. In contrast,
our technique is completely static, and can be applied even to
untested code.

Indefinite attack resistance is impossible to implement in
a self-sufficient tamperproofing system [5]. Rather, Parallax
is designed to raise the bar for attackers, and increase the

effort required to tamper with protected code. A determined
adversary may eventually succeed in tampering with code by
ensuring one or more of the following conditions. (1) The
modifications reside entirely in instructions without overlapping
gadgets. As discussed in Section VII, Parallax attempts to
minimize such instructions. (2) Protected code is modified
such that the resulting gadgets do not affect the outcome
of the verification code. (3) Protected code is altered such
that the resulting gadgets are semantically equivalent to
the originals (including memory/register allocation). These
conditions significantly restrict the modifications that can be
safely made, making it much harder for an attacker to implement
arbitrary modifications.

IX. RELATED WORK

To the best of our knowledge, no prior work exists on using
Return-Oriented Programming techniques for tamperproofing.
Additionally, in contrast to our work, previous work on
tamperproofing does not discuss how the proposed techniques
can be applied at the binary level. We therefore believe that
our work is the first to discuss code protection which can be
implemented completely at the binary level, and can thus be
used to tamperproof legacy binaries.

Traditional anti-tampering algorithms make use of code
introspection, typically in the form of checksumming [14]. A
highly resilient example of such an algorithm was proposed by
Chang et al. [11], who use a network of cross-verifying code
regions based on checksumming. Unfortunately, Wurster et al.
have shown all such algorithms to be inherently vulnerable to
an attack which exploits the distinct handling of code and data
in modern processors [36]. The attack completely defeats all
introspection-based algorithms by allowing an attacker to freely
modify code in the processor’s instruction cache, while leaving
the data cache untouched. Later work has explored methods
to re-enable code self-checksumming by implementing checks
to detect the attack of Wurster et al [18]. Unfortunately, these
checks require W⊕X protection to be disabled, making the
checksummed binary vulnerable to traditional code injection.

The foremost among the few algorithms designed to
defeat this attack is oblivious hashing [13, 20]. OH verifies
code integrity by checking that hashes of the execution state
correspond to known correct values. In principle, it provides
strong protection which is difficult to circumvent. However,
the execution state is required to be deterministic, preventing
OH from protecting code with non-deterministic inputs, like
environment parameters or system call return values. The main
benefit of our approach compared to OH is that it can protect
code regions which OH cannot.

Previous work has proposed overlapping non-gadget instruc-
tions for tamperproofing [20, 24]. Instruction-level overlapping
is only applicable to architectures with variable-length byte-
aligned instructions [20]. In contrast, our ROP-based approach
does not have this restriction [10, 12]. Furthermore, overlapping
non-gadget instructions requires the insertion of additional
jumps and partial instructions in the protected code, which
leads to whole-program slowdowns of up to 3× [20]. Our
approach provides better overall performance, and can keep
performance overhead isolated from the protected code itself.
Another approach to overlapping is to share common code



blocks between functions. The usefulness of this approach is
limited, as most common code blocks found in real-world
binaries are non-sensitive instruction sequences like function
prologues. It is typically not possible to protect non-trivial code
blocks longer than one instruction using this approach [20].

Concurrently with our work, Lu et al. have explored the
use of ROP for code obfuscation [25]. However, they do
not consider tamperproofing, and thus do not explore how
to maximize the coverage of protective gadgets, or how to
craft gadgets which overlap with sensitive instructions. Instead,
their work focuses on the use of existing (partial) gadgets to
create ROP chains which are embedded with the intent of
hiding functionality. Furthermore, Lu et al. do not attempt to
prevent adversaries from tampering with their ROP chains once
these are discovered. Similarly, prior work has proposed code
hiding techniques based on function reuse, but this work has
not focused on extending this to tamperproofing [23].

X. CONCLUSION

We introduced a novel code self-verification technique
based on overlapping ROP gadgets with selected code. Several
rewriting rules can be used to increase the coverage of
protective gadgets, such that up to 90% of all code bytes are
protectable. This coverage exceeds that of oblivious hashing,
and our technique provides better protection for commonly
attacked non-deterministic control flow instructions. Unlike
code introspection-based verification algorithms, our approach
is not vulnerable to direct instruction cache modification attacks.
Furthermore, in contrast to oblivious hashing algorithms, our
approach can protect non-deterministic code. The performance
overhead of our approach can be confined to verification code
which is separate from the protected code. Thus, performance-
sensitive code is protectable without any slowdown, confining
the performance penalty to other code. The performance
overhead for programs protected using our technique is less
than 4%.
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